A GEOMETRICAL CHARACTERIZATION OF BANACH SPACES WITH THE RADON-NIKODYM PROPERTY

BY HUGH B. MAYNARD

ABSTRACT. A characterization of Banach spaces having the Radon-Nikodym property is obtained in terms of a convexity requirement on all bounded subsets. In addition a Radon-Nikodym theorem, utilizing this convexity property, is given for the Bochner integral and it is easily shown that this theorem is equivalent to the Phillips-Metivier Radon-Nikodym theorem as well as all the standard Radon-Nikodym theorems for the Bochner integral.

1. Introduction. Rieffel [9] proved a Radon-Nikodym theorem for the Bochner integral, using techniques established in [8], in an attempt to establish the Radon-Nikodym theorem of Phillips [7] and Metivier [5]. He was unable to establish it in the nonseparable case, the result depending upon a proof that every convex weakly compact set in a B-space is dentable. This circle of ideas was not closed until Troyanski [10] proved that a Banach space with a weakly compact fundamental subset is isomorphic to a locally uniformly convex Banach space. This is, as would be expected, much deeper than necessary and a simpler proof will be indicated in §2.

The obvious characterization of Banach spaces with the Radon-Nikodym property would seem to be that every bounded subset must be dentable. In §3 it is demonstrated that a characterization is that every bounded subset must be σ -dentable, where σ -dentability is a dentable type condition which is strictly weaker than dentability. It is however an open question if dentable and σ -dentable coincide in Banach spaces having the Radon-Nikodym property.

2. Dentability and σ -dentability with application to Phillip's Radon-Nikodym theorem. The following notation will be observed in the remainder of this paper. B will denote a Banach space and if $D \subset B$ then c(D) and $\overline{c}(D)$ will denote the convex hull of D and the closed convex hull of D, respectively. The open and closed spheres of radius r about $x \in B$ will be $S_r(x)$ and $\overline{S}_r(x)$. If (X, Σ, μ) is a totally finite positive measure space then $\Sigma^+ = \{E \in \Sigma : \mu(E) > 0\}$ and for a B-valued measure m on Σ , the average range of m over $E \in \Sigma^+$ with respect to μ is $A_E(m) = \{m(F)/\mu(F) : F \subset E, F \in \Sigma^+\}$.

Definition 2.1. A set $D \subset B$ is σ -convex iff for every sequence $\{a_i\}_{i=1}^{\infty}, a_i \geq 0$, $\sum_{i=1}^{\infty} a_i = 1$, and for every sequence $\{d_i\}_{i=1}^{\infty} \subset D$ such that $\sum_{i=1}^{\infty} a_i d_i$ converges, we have $\sum_{i=1}^{\infty} a_i d_i \in D$.

Received by the editors November 29, 1971 and, in revised form, December 5, 1972. AMS (MOS) subject classifications (1970). Primary 28A45, 46B99, 46Gl0.

Key words and phrases. Radon-Nikodym theorem, Radon-Nikodym property, Bochner integral, dentable, σ-dentable.

The σ -convex hull of $D \subset B$ is given by

$$\sigma(D) = \left\{ \sum_{i=1}^{\infty} a_i d_i : a_i \ge 0, \sum_{i=1}^{\infty} a_i = 1, \text{ and } \sum_{i=1}^{\infty} a_i d_i \text{ converges} \right\}.$$

If D is bounded then the infinite convex sums in $\sigma(D)$ always exist. We may also assume that the constants $a_i > 0$. In addition we always have the following relations:

$$D \subset c(D) \subset \sigma(D) \subset \bar{c}(D)$$

where the inclusions may be strict.

We now recall the definition of dentable and introduce the concept of σ -dentable.

Definition 2.2. A set $D \subset B$ is dentable $[\sigma$ -dentable] iff for each $\varepsilon > 0$ there exists $d \in D$, such that

$$d \notin \bar{c}(D \sim S_{\epsilon}(d)) \quad [d \notin \sigma(D \sim S_{\epsilon}(d))].$$

If D is not dentable [σ -dentable] then any number $\varepsilon > 0$ such that for all $d \in D$, $d \in \bar{c}(D \sim S_{\varepsilon}(d))$ [$d \in \sigma(D \sim S_{\varepsilon}(d))$] is called a *dentable limit* [σ -dentable limit] for the set D.

The following lemma is immediate.

Lemma 2.1. If $D \subset B$ is dentable then it is σ -dentable.

Example. By considering the following subset of $L^1(X, \Sigma, \mu)$ where (X, Σ, μ) is a nonatomic, finite, positive measure space with $\mu(X) = 1$, we can see that σ -dentable is a strictly weaker concept than dentable.

Let P be the positive cone in $L^1(X, \Sigma, \mu)$ and U_1 be the unit cell $[U_1 = \{f: ||f|| = 1\}]$ in $L^1(X, \Sigma, \mu)$. Then if $D = [\bigcup_{0 < \theta < \pi} e^{i\theta} P \cap U_1] \cup \{1\}$ it is easy to establish that the constant function 1 is a σ -denting point for D [i.e. $\forall \epsilon > 0$, 1 is the appropriate element of D] and yet D is not dentable.

In order to prove dentability or σ -dentability of a set it is often possible to reduce the problem to the consideration of countable sets.

Lemma 2.2. If $D \subset B$ has the property that every countable subset is dentable (σ -dentable) then D is dentable (σ -dentable).

Proof. The proof of the σ -dentable assertion is entirely analogous to that of the dentable case and thus we will only prove the dentable assertion.

Suppose D is not dentable. Then there exists $\varepsilon > 0$ such that ε is a dentable limit for D. Now for each $x \in D$ there exists a countable set $A_x \subset D \sim S_{\varepsilon}(x)$ such that $x \in \overline{c}(A_x)$.

Define by induction a sequence $\{A_n\}$ of subsets as follows. Pick any $z \in D$ and set $A_1 = \{z\}$. Given A_{n-1} let $A_n = \bigcup \{A_x : x \in A_{n-1}\}$. Thus the set $A = \bigcup_{n=1}^{\infty} A_n \subset D$ is countable and is clearly not dentable and hence the lemma is established.

Theorem 2.1. If $K \subset B$ is a relatively weakly compact set, then it is dentable.

Proof. By Lemma 2.2 we need only consider the case when B is separable. In this case the argument given by Rieffel [9, p. 76] or the argument by Namioka [6, p. 150] can be used to obtain the result.

An elementary proof of this fact can be obtained in the following manner.

It suffices to assume that K is a convex weakly compact set since Rieffel [9] showed that if $\bar{c}(D)$ is dentable then D is dentable.

Then by Lemma 2.2 it suffices to assume that B is separable. Suppose $\varepsilon > 0$ and let A be the set of extreme points of K. By the Kreın-Milman theorem, $A \neq \emptyset$. Let $\{x_i\}_{i=1}^{\infty}$ be a dense subset in B; then since \overline{A}^{w} is weakly compact and since

$$\overline{A}^{w} = \bigcup_{i=1}^{\infty} \overline{A}^{w} \cap [x_{i} + \overline{S}_{\epsilon/2}(0)],$$

there exists at least one i and a weak convex neighborhood N such that $\overline{A}^{w} \cap [x_{i} + \overline{S}_{\epsilon/2}(0)]$ contains $N \cap \overline{A}^{w}$. This follows since \overline{A}^{w} is a Baire space and since $\overline{S}_{\epsilon/2}(0) = \overline{S}_{\epsilon/2}^{w}(0)$.

Thus there exists $x \in A$ such that x is in the interior of N and the diameter of $N \cap \overline{A}^w$ is bounded by $\varepsilon/2$.

Let $K_1 = \bar{c}(K \sim N)$, $K_2 = \bar{c}(N \cap A)$. K_1 and K_2 are both weakly compact, convex, and disjoint. Thus

$$c(K_1 \cup K_2) = \overline{c}(K_1 \cup K_2)$$

= $\{\lambda x_1 + (1 - \lambda)x_2 : 0 \le \lambda \le 1, x_1 \in K_1, x_2 \in K_2\}.$

The diameters of K_1 and K_2 have the following bounds: $\delta(K_2) \le \varepsilon/2$ and if $d = \delta(K) < \infty$, $\delta(K_i) \le d$. Assume $d \ne 0$. Let $C = \{\lambda x_1 + (1 - \lambda)x_2 : x_1 \in K_1, x_2 \in K_2, \varepsilon/4d \le \lambda \le 1\}$. Thus $C \supset K_1$ and C is weakly compact. Suppose $y_1, y_2 \in K \sim C$. Then

$$y_{i} = \lambda_{i} x_{1}^{i} + (1 - \lambda_{i}) x_{2}^{i}, \quad 0 \leq \lambda_{i} < \varepsilon/4d, x_{1}^{i} \in K_{1}, x_{2}^{i} \in K_{2}, i = 1, 2.$$

Thus

$$||y_1 - y_2|| \le |\lambda_1| ||x_1^1 - x_2^1|| + ||x_2^1 - x_2^2|| + |\lambda_2| ||x_1^2 - x_2^2||$$

$$< (\varepsilon/4d) \cdot d + \varepsilon/2 + (\varepsilon/4d) \cdot d = \varepsilon.$$

Thus if $N_1 = N \sim C$, N_1 is weakly open, $x \in N_1$, and the diameter of $N_1 \cap K$ is less than ε . Thus $x \notin \overline{K} \sim S_{\varepsilon}(x)^{w}$ since $S_{\varepsilon}(x) \supset N_1 \cap K$. Thus since x is an extreme point of K, $x \notin \overline{c}(K \sim S_{\varepsilon}(x))$ and K is dentable.

The following theorem is due to Rieffel [9, Theorem 1, p. 71] and is obtained by replacing dentable with σ -dentable, the proof remaining essentially the same. We include a proof using the locally small average range Radon-Nikodym

theorem [4, Theorem 3.1] in the spirit of the simple equivalence of all Radon-Nikodym theorems for the Bochner integral.

Theorem 2.2. Let (X,Σ,μ) be a totally finite positive measure space and let B be a Banach space. Let m be a B-valued measure on Σ . Then there is a B-valued Bochner integrable function f on X such that $m(E) = \int_E f d\mu$ for all $E \in \Sigma$, iff

- (i) m is μ-continuous,
- (ii) $|m|(X) < \infty$,
- (iii) m has locally σ -dentable average range, that is, given $E \in \Sigma^+$, there exists $F \subset E$, $F \in \Sigma^+$, such that $A_F(m)$ is σ -dentable.
- **Proof.** (⇒) This is immediate from Theorem 1, Rieffel [9, p. 71] and Lemma 2.1.
- (\Leftarrow) Let $E ∈ Σ^+$ and ε > 0 be given. Then there exists $E_d ⊂ E$, $E_d ∈ Σ^+$, such that $A_{E_d}(m)$ is σ-dentable. Thus choose $b ∈ A_{E_d}(m)$ such that $b ∉ σ(A_{E_d}(m) S_ε(b))$. Suppose $b = m(F_0)/μ(F_0)$, $F_0 ⊂ E_d$, $F_0 ∈ Σ^+$. Then by Theorem 3.1 and its corollary [4, p. 16], if $b ∈ A(F_0, ε) = \{r ∈ B : ||m(A) rμ(A)|| ≤ εμ(A), <math>∀ A ⊂ F_0$, $A ∈ Σ^+\}$ we are done. So suppose $b ∉ A(F_0, ε)$.

Claim. There exists $F \subset F_0$, $F \in \Sigma^+$, such that $b \in A(F, \varepsilon)$.

Proof. Suppose not. Then the property that $||m(\tilde{E})/\mu(\tilde{E}) - b|| > \varepsilon$ is a local null difference property and hence by the exhaustion principle [4, Lemma 1.1, p. 2] $F_0 = \bigcup_{i=1}^{\infty} E_i$ where $m(E_i)/\mu(E_i) \in A_{F_0}(m) \sim S_{\varepsilon}(b) \subset A_{E_d}(m) \sim S_{\varepsilon}(b)$, but $m(F_0)/\mu(F_0) = \sum_{i=1}^{\infty} (\mu(E_i)/\mu(F_0))m(E_i)/\mu(E_i) \in \sigma(A_{E_d}(m) \sim S_{\varepsilon}(b))$ and this yields a contradiction.

Thus there must exist $F \subset F_0 \subset E$, $F \in \Sigma^+$, such that $b \in A(F, \varepsilon)$ and by Theorem 3.1 and its corollary [4, p. 16] we have the desired conclusion.

Corollary [Phillips]. Let (X,Σ,μ) be a totally finite positive measure space and let B be a Banach space. Let m be a B-valued measure on Σ . Then there is a B-valued Bochner integrable function f on X, such that $m(E) = \int_E f d\mu$, for all $E \in \Sigma$, iff

- (i) m is μ-continuous,
- (ii) $|m|(X) < \infty$, and
- (iii) m has locally relatively weakly compact average range.

Proof. (⇒) This follows from Rieffel [8, p. 466].

- (\Leftarrow) If m has locally relatively weakly compact average range then, by Theorem 2.1, m has locally dentable average range.
- 3. A geometric characterization of Banach spaces with the Radon-Nikodym property. The concept of σ -dentability allows us to obtain a relatively simple characterization of Banach spaces with the Radon-Nikodym property using Theorem 2.2.

Definition. A Banach space B has the Radon-Nikodym property (R-N property) iff for any totally finite positive measure space (X, Σ, μ) and any B-

valued μ -continuous measure m on Σ , with $|m|(X) < \infty$, there exists $f \in L^1_B(X, \Sigma, \mu)$ such that $m(E) = \int_E f d\mu$ for all $E \in \Sigma$.

Definition. A Banach space B is said to be a σ -dentable space iff every bounded set $K \subset B$ is σ -dentable.

It should be emphasized that it is not known if a σ -dentable space need have all of its bounded subsets dentable.

Theorem 3.1. A Banach space B has the Radon-Nikodym property iff B is a σ -dentable space.

- **Proof.** (\Leftarrow) If B is a σ -dentable space then Theorem 2.2 immediately implies that B has the R-N property because any B-valued, μ -continuous measure of finite variation has locally bounded average range.
- (⇒) Suppose B is not a σ -dentable space. Then there exists a bounded subset $K \subset B$ such that K is not σ -dentable. We will construct two regular measures m and μ which negate the Radon-Nikodym property.

Since K is bounded and not σ -dentable we can choose ε , N such that

- (i) ε is a σ -dentable limit for K, and
- (ii) $K \subset S_N(0)$.

Let X = [0, 1) and choose an increasing sequence of infinite partitions $\{\pi_n\}_{n=1}^{\infty}$ of X such that the following conditions are satisfied:

- (i) $\pi_n = \{A_z^n\}_{z \in N^n}$ where each $A_z^n = [a_z^n, b_z^n]$.
- (ii) For each $n, z \in N^n$, $A_z^n = \bigcup_{i=1}^{\infty} A_{(z,i)}^{n+1}$ where we consider $(z,i) \in N^{n+1}$.
- (iii) For each $n, z \in N^n$, $b_{(z,i)}^{n+1} = a_{(z,i+1)}^{n+1}$. Thus the decomposition of each half open interval A_z^n proceeds from left to right.

We now define a ring of subsets \mathcal{R} of X. Let $\mathcal{R} = \{A \cup B : A \text{ is a finite union of } A_z^k \text{'s and } B \text{ is a finite union of sets of the form } \bigcup_{i=m}^{\infty} A_{(z,i)}^{m+1} = A_z^n \sim \bigcup_{i=1}^{m-1} A_{(z,i)}^{m+1} \}.$

We consider both \varnothing and X to be elements of \mathscr{R} . We will now define μ and m on \mathscr{R} and extend to regular countably additive measures on $\sigma(\mathscr{R})$, the σ -algebra generated by \mathscr{R} . $\sigma(\mathscr{R})$ consists of the Borel subsets of [0, 1).

Define μ and m by induction on the sequence of partitions. Let $\mu(\emptyset) = 0$, $m(\emptyset) = 0$, $\mu(X) = 1$, m(X) = k where k is any element of K. Suppose μ and m are defined on the elements of π_n such that $m(A_z^n)/\mu(A_z^n) = k_z^n \in K$ for each $A_z^n \in \pi_n$. Then since K is not σ -dentable, $k_z^n = \sum_{i=1}^{\infty} \alpha_{(z,i)}^{n+1} k_{(z,i)}^{n+1}$, $\alpha_{(z,i)}^{n+1} > 0$, $\sum_{i=1}^{\infty} \alpha_{(z,i)}^{n+1} = 1$ and $\{k_{(z,i)}^{n+1}\}_{i=1}^{\infty} \subset K \sim S_{\epsilon}(k_z^n)$. We now define $\mu(A_{(z,i)}^{n+1}) = \alpha_{(z,i)}^{n+1} \mu(A_z^n)$ and $\mu(A_{(z,i)}^{n+1}) = \mu(A_{(z,i)}^{n+1}) k_{(z,i)}^{n+1}$. Let $\pi = \{A \subset X : A \in \pi_n \text{ for some } n\}$.

Thus m and μ are defined on each π_n and hence can be extended by finite additivity to all of \mathcal{R} .

Notice that the diameter of the average range of m over each A_z^n is at least ε . This fact, after extension to $\sigma(\mathcal{P})$, will yield the contradiction.

Notice also that the construction yields a "horizontal" countable additivity, that is,

$$\mu(A_z^n) = \sum_{i=1}^{\infty} \mu(A_{(z,i)}^{n+1}) \quad \text{and}$$

$$m(A_z^n) = \sum_{i=1}^{\infty} m(A_{(z,i)}^{n+1}) \quad \text{for all } n \in \mathbb{N}, z \in \mathbb{N}^n.$$

Claim 1. μ can be extended to a Borel measure on [0, 1) and hence is regular and countably additive.

Proof. It suffices to show that μ is regular on π relative to \mathcal{R} since it is then regular on \mathcal{R} and hence has an extension to a Borel measure on [0, 1).

Let $\varepsilon > 0$ be arbitrary and $A \in \pi$. Then using the "horizontal" countable additivity there exists $\{A_i\}_{i=1}^n \subset \pi$ such that

$$\left|\mu(A) - \sum_{i=1}^{m} \mu(A_i)\right| < \varepsilon.$$

Thus we have

$$\bigcup_{i=1}^{m} A_i \subset \overline{\bigcup_{i=1}^{m} A_i} \subset A,$$

 $\overline{\bigcup_{i=1}^m A_i}$ is compact and hence μ is inner regular on A.

Suppose A = [a, b). Then by choosing the tail end of the decomposition of the preceding interval, we can find a sequence $\{A_i\}_{i=1}^{\infty}$ such that $\mu(\bigcup_{i=1}^{\infty} A_i) < \varepsilon$, $\bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$, and $(A \cup [\bigcup_{i=1}^{\infty} A_i])^i \supset A$, where D^i is the interior of D. Thus μ is outer regular on A and hence μ is regular on all of π .

Claim 2. m can be extended to a Borel measure on [0,1) such that $||m(A)|| \le N\mu(A)$ for all $A \in \sigma(\mathcal{R})$. Thus the extension is countably additive and regular.

Proof. Since μ is regular and dominates m we can apply Theorem 1 [1, p. 62] of Dinculeanu which implies that m has a countably additive extension of finite variation such that m remains dominated by μ and m is regular.

Claim 3. m is not an indefinite integral with respect to μ .

Proof. It suffices to show that, for $B \in \sigma(\mathcal{P})$, the average range of m over B, $A_B(m)$, has diameter not less that $\varepsilon/2$. This sufficiency follows from Theorem 3.1 and its corollary [4, p. 16].

Let $B \in \sigma(\mathcal{R})$. Now by the regularity of μ and m on $\sigma(\mathcal{R})$ we can choose a compact C and an open O such that (i) $C \subset B \subset O$, and (ii) $\mu(O - C) < (\varepsilon/16N)\mu(B)$.

Now those elements in \mathcal{R} of the form $A_{(z,i)}^n \cup [\bigcup_{i=m}^\infty A_{(z,i-1)}^n]$ form a base of the topology in [0,1) and hence by the compactness of C and the openness of O we can find a finite number of these which cover C and are contained in O. Thus there exists a disjoint sequence $\{A_i\}_{i=1}^\infty \subset \pi$ such that $C \subset \bigcup_{i=1}^\infty A_i \subset O$.

Now there must exist at least one set A_i such that $\mu(A_i \sim B)/\mu(A_i) < \varepsilon/8N$ = δ since if not, we have

$$\mu(O \sim C) \ge \mu\left(\bigcup_{i=1}^{\infty} A_i \sim B\right) = \sum_{i=1}^{\infty} \mu(A_i \sim B)$$

$$\ge \delta \sum_{i=1}^{\infty} \mu(A_i) \ge \delta \mu(C) \left[1 - \frac{\varepsilon}{8N}\right]$$

$$\ge (\varepsilon/16N)\mu(B) \quad \Rightarrow \Leftarrow.$$

Thus choose A_{α} such that

$$\mu(A_{\alpha} \sim B)/\mu(A_{\alpha}) < \varepsilon/8N.$$

Let $D = A_{\alpha} \cap B \in \sigma(\mathcal{R})$, then $D \subset B$ and $\mu(D) > 0$. Now by taking the next partition of A_{α} we get $A_{\alpha} = \bigcup_{k=1}^{\infty} C_k$ where the $\{C_k\}_{k=1}^{\infty} \subset \pi$ and are disjoint. Then there must exist a small n such that

$$\mu(C_n \sim B) < (\varepsilon/8N)\mu(C_n)$$

since if not $\mu(A_{\alpha} \sim B) = \mu(\bigcup_{i=1}^{\infty} (C_n \sim B)) \ge (\varepsilon/8N) \sum_{i=1}^{\infty} \mu(C_n) = (\varepsilon/8N)\mu(A_{\alpha})$ which contradicts (*).

Let $E = C_n \cap B$. Now from the construction of m and μ

$$\left\|\frac{m(A_{\alpha})}{\mu(A_{\alpha})}-\frac{m(C_{n})}{\mu(C_{n})}\right\|\geq \varepsilon.$$

In addition

$$\left\| \frac{m(D)}{\mu(D)} - \frac{m(A_{\alpha})}{\mu(A_{\alpha})} \right\| = \left\| \left(1 - \frac{\mu(D)}{\mu(A_{\alpha})} \frac{m(D)}{\mu(D)} + \frac{\mu(A_{\alpha} \sim B)}{\mu(A_{\alpha})} \frac{m(A_{\alpha} \sim B)}{\mu(A_{\alpha} \sim B)} \right) \right\|$$

$$\leq \frac{\mu(A_{\alpha} \sim B)}{\mu(A_{\alpha})} \left\{ \left\| \frac{m(D)}{\mu(D)} \right\| + \left\| \frac{m(A_{\alpha} \sim B)}{\mu(A_{\alpha} \sim b)} \right\| \right\} < \frac{\varepsilon}{4}.$$

In the same manner we get $||m(E)/\mu(E) - m(C_n)/\mu(C_n)|| < \varepsilon/4$. Thus

$$\left\|\frac{m(E)}{\mu(E)}-\frac{m(D)}{\mu(D)}\right\|\geq \frac{\varepsilon}{2}.$$

Thus the diameter of $A_B(m)$ is not less than $\varepsilon/2$ for all $B \in \sigma(\mathcal{R})$ and hence m is not an indefinite integral with respect to μ .

Thus B does not have the R-N property.

The following corollary is due to Uhl [11, Theorem 1, p. 2].

Corollary. If B is a Banach space such that every closed separable subspace of B is linearly homeomorphic to a subspace of a separable dual space, then B has the Radon-Nikodym property.

Proof. Suppose B satisfies the hypothesis of the corollary. Let K be any bounded set in B and D any countable subset of K. Then the closed linear span

 $[\overline{D}]$ of D is linearly homeomorphic to a subspace of a separable dual space. Since a linear homeomorphism maps σ -dentable sets into σ -dentable sets and since a separable dual space has the R-N property, D is mapped into a σ -dentable set and hence is itself σ -dentable. Thus K is σ -dentable and B has the R-N property.

REFERENCES

- 1. N. Dinculeanu, Vector measures, Internat. Series of Monographs in Pure and Appl. Math., vol. 95, Pergamon Press, New York, 1967. MR 34 #6011b.
- 2. James E. Honeycutt, Jr., Extensions of abstract valued set functions, Trans. Amer. Math. Soc. 141 (1969), 505-513.
- 3. J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1(1963), 139-148. MR 28 #3308.
- 4. H. B. Maynard, A Radon-Nikodým theorem for operator-valued measures, Trans. Amer. Math. Soc. 173 (1972), 449-463.
- 5. M. Métivier, Martingales à valeurs vectorielles. Applications à la dérivation des mesures vectorielles, Ann. Inst. Fourier (Grenoble) 17(1967), 175-208. MR 40 #926.
 - 6. I. Namioka, Neighborhoods of extreme points, Israel J. Math. 5(1967), 145-152. MR 36 #4323.
- 7. R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65(1943), 108-136. MR 4, 218.
- 8. M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466-487. MR 36#5297.
- 9.——, Dentable subsets of Banach spaces, with application to a Radon-Nikodym theorem, Proc. Conf. Functional Analysis (Irvine, Calif., 1966), Thompson Book, Washington, D.C., 1967, pp. 71-77. MR 36#5668.
- 10. S. L. Troyanski, On locally uniformly convex and differentiable norms in certain non-separable Banach spaces, Studia Math. 38(1971), 173-180.
 - 11. J. J. Uhl, Jr., A note on the Radon-Nikodym property for Banach spaces (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112